Holographic Renyi entropy from quantum error correction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Entropy of a Quantum Error Correction Code

We define and investigate the notion of entropy for quantum error correcting codes. The entropy of a code for a given quantum channel has a number of equivalent realisations, such as through the coefficients associated with the Knill-Laflamme conditions and the entropy exchange computed with respect to any initial state supported on the code. In general the entropy of a code can be viewed as a ...

متن کامل

Relating different quantum generalizations of the conditional Renyi entropy

Marco Tomamichel,1, 2 Mario Berta,3, 4 and Masahito Hayashi5, 1 Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore School of Physics, The University of Sydney, Sydney 2006, Australia Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA Institute for Theoretical Physics, ETH Zurich, 8092 Zürich, Switzerland Graduate School of ...

متن کامل

Shannon Entropy Versus Renyi Entropy from a Cryptographic Viewpoint

We provide a new inequality that links two important entropy notions: Shannon Entropy H1 and collision entropy H2. Our formula gives the worst possible amount of collision entropy in a probability distribution, when its Shannon Entropy is fixed. While in practice it is easier to evaluate Shannon entropy than other entropy notions, it is well known in folklore that it does not provide a good est...

متن کامل

Renyi Entropy Estimation Revisited

We revisit the problem of estimating entropy of discrete distributions from independent samples, studied recently by Acharya, Orlitsky, Suresh and Tyagi (SODA 2015), improving their upper and lower bounds on the necessary sample size n. For estimating Renyi entropy of order α, up to constant accuracy and error probability, we show the following Upper bounds n = O(1) · 2(1− 1 α )Hα for integer α...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2019

ISSN: 1029-8479

DOI: 10.1007/jhep05(2019)052